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A Shock Tube Utilized to Produce Sharp-
rising Overpressures of 400 Milliseconds

Duration and Its Employment in
Biomedical Experimentation

FORWORD

The purpose of the present study is two-fold; namely, (1) to describe
"long-duration" pressure pulses simulating those produced by nuclear
explosions, and (2) to present the result of an interspecies animal
study when the data on six different animals are extrapolated to a
biologic target the size of man.

The results are limited to single-pulses of overpressure which
rise almost instantaneously to a maximum and endure for about
400 msec. As far as man is concerned, these results do not apply
to very short duration overpressures (50 msec or less), to pressures
having a slow or step-wise rise to a maximum, and to oscillating
pressures of considerable magnitude. Also the data apply to over-
pressure injury under circumstances in which displacement from
blast pressures and winds is minimized and blast-energized missiles do
not occur. The findings are applicable to military and industrial
situations involving potential exposure to explosive phenomena,
e.g., nuclear weapons, high explosives, tanks containing gases
or liquids under high pressure, etc.

The interspecies study is a part of research carried on since
1952 aimed at better understanding human response to the several
environmental variations produced by low and high yield explosives.



ABSTRACT

A shock tube employed for blast biology studies is described along

with the results of one series of experiments.

The shock tube is air-driven and utilizes Mylar plastic diaphragms.

The compression chamber is 17.5 ft in length and 40.5 in. I.D.; it reduces

in diameter to 23. 5 in. over a 3-ft-long transition section just upstream of

the diaphragm station. The expansion chamber consists of 30 ft of Z3.5 in.

I.D. tubing followed by ZZ ft of 40.5 in. I.D. tubing. It is closed distally

by a steel end-plate to generate high pressures from the reflected shock.

Three vents in the expansion side of the system serve to control the dura-

tion of the overpressure and to eliminate multiple reflections by bleeding

off the reflected shock as it travels upstream.

An interspecies correlation is presented based on mortality data from

six species of experimental animals with an'extrapolation to a 70 kg animal.
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INTRODUCTION

The shock tube has proven to be a valuable tool in studying the biological

1-5effects of air blast. By appropriate modifications, the device can be made

to generate a wide variety of wave forms some of which closely resemble

6-7
those recorded inside structures exposed to full-scale nuclear detonations.

The capability of creating and reproducing at will a desired variation in en-

vironmental pressure has made it possible to initiate comparative interspecies

experimentation without which there can be no clear understanding of hazard-

ous and non-hazardous wave forms. In this light, it is well to emphasize that

the air-driven shock tube has an unusual versatility and offers many other

advantages. For example, it has become possible to achieve the precision in

performance that is quite critical for biological experimentation. Too, with

proper care, there need be no complications due to secondary missiles, hot

gases, and toxic fumes which often plague explosive -driven tubes. Finally,

pressure-time recording instruments, as well as those employed to monitor

pathophysiological processes, can be mounted just outside the test chamber

in close proximity to the animal under study.

It is well now to turn to the two main purposes of this paper; namely,

first to describe a shock tube assembled to produce single pressure pulses

that rise almost instantaneously to a maxi~mum and endure fo~r about 400 msec,

which is a wave form quite comparable to those produced under certain cir-

cumatances by nucrlear detonations; and second, to present mortality data on

six species of animals aUl exposed in a similar geometry to similar pressure-

time phenomena that varied among the species mostly with respect to the

magnitude of the overpressure.

4J



I
METHODS

Geometry of the Shock Tube

Figure i presents a diagram of the blast tube. The over-all length

is approximately 70 ft. The compression chamber measures 17 ft 5 in-

and has an internal diameter of 40. 5 in. The driver reduces in diameter

from 40.5 in. to Z3. 5 in. over a 3-ft long transition section at its diaphragm

end. The expansion chamber is 53 ft 4 in. in length, of which 30 ft is Z3.5

in. I.D. tubing followed by 2Z ft of 40.5 in. I.D. tubing. The increase in

diameter of the expansion chamber from Z3.5 in. to 40.5 in. occurs rather

abruptly over a span of little over i ft.

As noted in Fig. i, the driver is stationary since it is "nested" in a

massive reinforced concrete back-stop. Consequently, the various compon-

ents on the expansion side are on casters to facilitate diaphragm replacement.

The end of the tube is closed by a Z-in. thick steel plate - the end-plate.

Three vents, each i0xI4x8 in., are located at the upstream end of the

40.5 in. tubing of the expansion chamber. These vents serve to "tailor" the

wave form and will be discussed later.

The diaphragms employed are 40x40 in. sheets of polyester plastic film

(Dupont Mylar). They have holes pre-drilled to match the bolt holes in the

flanges. For their insertion they are simply bolted between the appropriate

flanges. Mylar sheets of 0.010 and 0.0075 in. thickness are employed, a

predetermined number being used to hold a given pressure in the driver section.

Diaphragms are ruptured by lead pellets from a sawed-off 12-gauge shot-

gun mounted on the tube. The gun fires straight down through the tube,

through holes appropriately placed in the top and bottom of the tube. The

5
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diaphragms under pressure obligingly bow-out in the path of the shotgun

blast. Since the shot passes out of the tube through the vent in the under

side, it is not carried downstream where it might interfere with the test.

Photographic views taken of the blast tube are presented in Figs. Z, 3

and 4. As seen in Fig. 3 access into the end of the tube, for animal place-

ment, is accomplished by separating the tube at the distal most Z4 in. flanges.

The shack seen near the end-plate houses the pressure-time recording

instruments and the equipment necessary to operate the shock tube.

Instrumentation

In these particular experiments pressure-time variations were measured

by Quartz piezo-electric gauges (Model 401)* that were shock mounted flush

with thc inside of the tube. Gauges were routinely placed at the end-plate and

at short distances upstream from the end-plate. The signal from a gauge was

fed through low noise cable with an amplifier-calibrator* into an oscilloscope

(Tektronix Model 535A) having a Type L or Type 53/54C pre-amplifier plug-in

unit. This oscilloscope had a single sweep circuit which prevented retrigger-

ing after the desired trace was recorded.

In using the oscilloscope, the horizontal sweep was externally triggered

by the signal from another "trigger gauge" of Barium Titanate** located just

upstream of the recording gauge. Pre-triggering the sweep allowed a refer-

ence trace of base line to be photographed during the time the shock travelled

from the "Ttrigger gauge" to the recording gauge. To insure sufficient voltage

to trigger reliably the oscilloscope sweep, the signal from the trigger gauge

was amplified. A power supply (Type 105) with amplifiers** (Type 104A) was

used for that purpose.

*Purchased from Kistler Instrument Corporation, North Tonawanda, N.Y.
**Purchased from Atlantic Research Corporation, Alexandria, Va.
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The sweep on the face of the oscilloscope was photographed for the per-

manent pressure-time record with a Polaroid Land Camera mounted in a peri-

scope assembly. The components that make up a channel of instrumentation

are shown in Fig. 5. Available at present are 8 channels of pressure-time

measuring gear plus three channels for monitoring the pressures within bio-

logical systems.

Calibration of Gauges

The quartz piezo-electric gauges were statically calibrated using a small

pressure vessel. Their dynamic performance was also checked on a iz-in. -

diameter calibration shock tube. Barium titanate and lead zirconate crystal

gauges were calibrated on the calibration shock tube by measuring their voltage

out-put at various shock pressures. The latter were computed from measuring

the speed of the shock with a Hewlett-Packard Electronic Counter tk~at was

started and stopped by gauges placed 18 in. apart.

3io.. .,4ical Material

Table 1 summarizes the number of animals from each of the 6 different

species that were employed in this study, along with their body weights and

ages. Of the total of 569 animals, 140 were mice; 164, rats; 96, guinea pigs;

104, rabbits; 35, dogs; and 30, goats. Their body weights rangcd between ZZ g

for the mouse to Z0 kg for the goat.

All animals were exposed to the overpre ssure against the end-plate.

Except for a few of the mice and rats that managed to turn end-for-end in their

cages, all animals were right-side-on to the incident shock front. The dogs and

goats were restrained in harness -- the mice, rats, guinea pigs, and rabbits in

wire mesh cages as described in a previous study. 4
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TABLE I

ANIMALS USED IN THIS STUDY

Species Numasof Body weight Age, months
Speciesanimals

Mouse 140 ZZ g * 1.9* 1 - 1-1/z
(Webster strain)

Rat 164 19Z g * 2 5 2 - Z-1/2
(Spraguc -Dawlcy)

Guinea pig 96 445 g :k 37 3-1/2 - 4
(English short haired)

Rabbit 104 1. 97 kg * 0.26 2-1/2 - 3
(New Zealand White)

Dog 35 15.1kg*3.1 -
(Mongrel)

Goat 30 20.5 kg * 3.6 4- 5
(Mixed breed)

*Mean and standard deviation

13



RESULTS

Pressure-time Records

Illustration of four piezo-electric gauge records are presented in Fig.

6. The upper two records were from gauges I and 2 located face-on flush

with the inside of the end-plate, while the lower two records were from gauges

3 and 4 side-on at 3 in. and 9 in. upstream from the end-plate. As seen in the

figure, the face-on gauges see the incident and reflected shock pressures as

one step, whereas-those gauges side-on resolve the shocks as two pressure

steps. It can also be noted from the record of gauge 2 that the rise time of

the pressure on the end-plate was less than that of the gauge. The oscillations

seen on the records to damp out rapidly were, of course, due to the natural

frequencies of the quartz crystal gauges.

The duration of the overpressure (near 400 msec) can be read from the

record of gauge 4 since the oscilloscope that recorded the out-put of that gauge

was run at a fairly slow sweep-speed of 50 msec/cm.

The magnitude o. the incident and reflected shock fronts obtained with a

range of compression chamber pressures between 17 psi to 170 psi was plotted

and is shown in Fig. 7. The reflected shock pressures from 25 psi to nearly

60 psi were sufficient for the compilation of the dose-response curves. The

durations of the overpressures over that range of reflected pressures were

between 350 to 41Z msec.

Mortality

The Z4-hr lethality obtained with the sample of animals exposed at the

various driver pressures and the associated mean incident and reflected pres-

:-urcs are given in Table Z. Previous studies have shown that the mortality

14
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71
TABLE 2

MORTALITY AS RELATED TO THE MAGNITUDE OF THE INCIDENT

AND REFLECTED SHOCK FRONTS

Compression
chamber Incident Mortality
pressure shock Reflected shock No. dead

psi psi psi Total Per cent

Mice:

58 10.Z (9.5-11.0)* 27.2 (Z5.4-27.9)* 7/40 17.5
65 11.2 (10.9-11.4) 28.9 (28.6-29.1) 8/30 26.7.
70 10.9 (10.5-11.2) 31.6 (31.3-31.9) 18/30 60.0
80 13.3 (13.2-13.4) 35.6 (34.7-36.6) 18/20 90.0

130 18.0 (17.5-18.5) 50.8 (49.5-52.2) 20/20 100.0

Rats:

70 11.4 (10.9-11.9) 30.4 (30.0-30.8) 2/30 6.7
80 13.8 (13.4-14. 1) 34.4 (33.8-34.7) 12/34 35.3
95 13.6 (IZ.7-14.0) 38.6 (37.9-39.6) 35/50 70.0

105 15.4 (15.0-15.8) 4Z.2 (40.3-43.2) 35/40 87.5
130 18.0 (17.5-18.5) 50.8 (49. 5-52.2) 10/10 100.0

Guinea pigs:

65 10.9 (10.6-11.0) 29.0 (Z8.6-29.8) 1/24 4.2
80 12.0 (11.0-12.4) 33.9 (33.2-34.3) 9/24 37.5
80 13.4 (12.8-14.0) 35.8 (35.5-36.5) 18/24 75.0
95 13.5 (11.3-14.7) 39.9 (38.1-41.0) 21/24 87.5

Rabbits:

48 9.2 (8.7-9.8) 22.8 (ZO.0-24.7) 1/20 5.0
58 10.5 (9.6-10.9) 26.9 (25.0-Z9.1) 10/28 35.7
75 12.2 (11.5-13.6) 32.6 (30.5-34.6) 16/24 66.7
80 13.1 (lZ.5-13.6) 36.6 (35.2-38.3) 17/20 85.0
95 14.3 (14.0-14.7) 40.5 (40.4-40.5) 12/1Z 100.0

95 14.7 (13.9-15.1) 39.2 (39.0-39.4) 0/5 0
115 16.6 (16.0-17.4) 44.1 (42.2-44.9) 1/10 10.0
130 17.7 (16.9-18.4) 48.1 (46.8-49.6) 6/10 60.0
150 19.0 (18.2-19.9) 53.0 (50.0-55.3) 9/10 90.0

Goats:

130 16.7 (15.8-17.8) 44.9 (44.0-46.2) 2/10 20.0
150 18.2 (16.2-19.3) 51.4 (47.3-56.2) 4/10 40.0
170 19.4 (19.0-20.1) 56.9 (56.6-57.4) 3/5 60.0
170 20.3 (20.0-20.7) 59.3 (58.7-60.1) 4/5 80.0

Computed LD5 0 1's: Mice, 30.7 psi; rats, 36.3 psi; guinea pigs, 34.5 psi; rabbits,

29.6 psi; dogs, 47.8 psi; goats, 53.0 psi.

*Mean and range.

17



4

was best correlated with the reflected shock pressures. Since plotting the

per cent mortality against the reflected pressure produced a sigmoid curve,

the probit analysis was applied to the data which transforms it into a straight

line.8 The general form of the probit equation of this type was:

Y = a+b logX

when Y was the per cent mortality in probit units, X was the reflected shock

pressure, and a and b were the intercept and slope constants, respectively.

The LD5 0 (the pressure associated with 50 per cent mortality) was obtained by

substituting the probit value of 5 (equal to 50 per cent mortality) for Y in the

appropriate probit equation and solving for X. The LD 5 0 s obtained in this

manner, the standard errors of the LD Is and the probit regression line

equations are listed in Table 3. The LDs 0 Is in order of increasing species

weights were as follows: mouse, 30. 7; rat, 36.3; guinea pig, 34.5; rabbit,

29.6; dog, 47.8; and goat, 53.0 psi. The trend was for the LD5 0
t s to increase

with the species size. The probit regression lines with the data points are

presented graphically in Fig. 8.

The LD5 0
t s fell into three groups according to statistical tests that com-

pared them for significant differences. The mouse and rabbit were not signi-

ficantly different from one another at the 95 per cent confidence level; neither

were the guinea pig and rat, nor the dog and goat. However, each pair, as

grouped above, were different statistically from one another. That is, the

mouse and rabbit were significantly below the rat and guinea pig who were be-

low the dog and goat.

Appropriate statistical tests that compared the slopes of the six probit

mortality curves revealed that they were essentially parallel at the 95 per cent

19



TABLE 3

SUMMARY OF THE RESULTS FROM THE PROBIT ANALYSIS

LD50 Standard error Probit equation constants

Species psi of the LD5 0, Ps" intercept, a slope, b

Mouse 30.7 * 0.56 -23.63 19.25

Rat 36.3 * 0.61 -23.82 18.48

Guinea pig 34.5 +0.64 -28.50 21.78

Rabbit 29.6 + 0.90 -13.63 12.67

Dog 47.8 * 1.06 -49.47 32.43

Uoat 53.0 -Z.'79 -16.68 12.57
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confidence level. This may be interpreted to mean that the same type of

stimulus was instrumental in killing the animals from each species..8

Interspecies Correlation Between LD 0 Reflected Pressures and Species Weight

A log-log plot of the LD Is versus the mean body weight of each species

appears in Fig. 9. The regression line equation, calculated by the method of

least squares that best fit the data, was:

Log L) 50 1. 3673 + 0. 06939 log BW

where

LIM5  the reflected pressure required for 50 per cent

lethality, psi

BW = mean body weight of the species, grams

L.3673 =the intercept constant

0. 06939 =the slope constant

According to Fig. 9 there is fair agreement between the calculated line

and the measured points save for the rabbit whose point was noticeably Low

for its weight. The standard error of the regression estimate was 0.060Z

log units or 13. 9 per cent.

Included in Fig. 9 is the calculated point for a 70 kg animal. It was ob-

tained by simply solving the regression equation for a body weight of 70, 000 g.

In other words, this predicts 50.5 psi to be the LD so reflected pressure for

a large animal the size of man exposed against a reflecting surface to a single-

pulse overpressure rising almost instantaneously to near a maximum and en-

during for about 400 msec.

21



E

EoE
e2~

00
LO 2 8

0'

0- 0
at '- 3: N

t2E 0 0

z 0 m~ I

4. @0 3: 1 0

@00

r2 (

0 0'

z -D

II-

0,L U)

cooo
<0 0

C, z

cr 0
(1)9An

w0 0-

Ic/)W0

(r0M

0 ir 0

LL O

LiiD

0 0 0 0 0
Q C W T n yj

isd'38 m~ NOHS(1302-J3 OcO2



DISCUSSION

By way of discussion, remarks in three areas are indicated; i. e., (a)

the general behavior of the pressure source, (b) the wave form achieved

using the shock-tube hardware described, and (c) the biological implications

of the data.

The General Behavior of the Pressure Source

A study of Table Z, which gives the mean and range of the incident and

reflected shock overpressures for the several experiments, shows that the

pressure source utilized did not function perfectly as far as reproductibility

of overpressures were concerned. F'or example, the variation in incident

shocks for the different pressure groupings ranged from a few tenths of a psi

to a maximum of 3.4 psi (see the guinea pig data for 95 psi compression

chamber pressure). In the latter case the mean incident shock pressure was

13. 5 psi with a minimum Z. 2 psi below and a maximum i. 2 psi above the

mean, respectively. Variability for reflected shocks, as could be expected,

was somewhat greater, but only ranged from a few tenths of a psi to a maxi-

mum of 8.9 psi for the goat exposure involving a compression chamber pres-

sure of 150 psi. The maximum reflected shock was 4. 1 psi above the mean

while the minimum was 4. 1 psi below the mean of 51.4 psi. Though this last

variability represents a performance about *10 per cent from the mean pres-

sure, it is indeed the maximal "mrisbehavior"? of the shock tube. In most cases,

the variability was much less as a study of the data in Table Z will show. In

fact, judging fromn earlier experience, the reproductibility performance noted

in the present study is considered quite good indeed.



The Wave Form Achieved

Before the vent holes were added to the distal section of the sbock tube-,

the wave form had many undesirable characteristics: first, the duration of

the overpressure was longer than desired; second, there was considerable

"crowning" t of the overpressure after the development of the reflected shock,

that is, the maximal pressure developed was considerably above the reflected

shock pressure;,third, marked oscillations in the overpressure occurred during

the falling phase of the pulse. These were many in number and the amplitude

of the oscillations was high.

After addition of the vents, all of these untoward characteristics were

improved, though the wave form achieved is, from one point of view, still not

exactly that desired. For example, attention is directed to the lower right-

hand trace in Fig. 6 which shows the pressure pulse in its entirety on a some -

what compressed time scale. The reader will note that the maximal overpres-

sure achieved is still somewhat above (about 5 psi) the reflected shock pressure

of near 36 psi. Also, the pressure oscillations present represent a swing in

pressure of about 19 psi, occurring in 20 msec; this involves a variation of

about 1/2 the magnitude of the reflected shock pressure. Also, if Z0 msec is

taken for the half-cycle time, the frequency of this portion of the oscillation

is 25 cps.

Thus, wave forms, having the characteristics of the pattern just discussed,

raises uncertainties as regards assessing the biological implications of the

pressure pulse, which uncertainties would be markedly lessened if the wave

forms were "clean"; e.g., the crowning and pressure oscillations were absent.

This point will be pursued later.

However this may be, it can be said from another point of viewv that the



wave forms recorded in the present study arc similar to some of those seen

in full-scale operations in Nevada and are, therefore, quite desirable. In

truth, there is need for knowing the biology of both "clean" and "unclean"

pressure pulses and in this light the present study contributes a great deal.

Biological Implications of the Data

At 1oa -t twn intpr.qtina oauestions arise in the biological area: first, wh4t

porLiuios of the pressure pulac contribute to injury and second, what faith may

or may not be put in extrapolating interspecies data to larger animals?

With regard to the first question, it is now clear that the animal poorly

tolerates very "fast"-rising overpressures compared with "slow"-rising

pressure pulses of the same magnitude. This fact directs attention to the

rising phase of the overpressure as critical and implies that damage is asso-

ciated with shock loading. If indeed this is so and the animal suffers damage

from the initial pressure rise, then any after-coming pressure variations

might well enhance the injury. Also involved, of course, is the amplitude

and frequency of the pressure oscillations, particularly as the latter may

"match" the natural frequency of the thorax-abdominal system of a given

species.

Also, if shock loading is one of the critical factors biologically, one

would expect that any degrading of the average rate of pressure rise -all

other factors being equal - would be associated with increased tolerance to

overpressure. Such is the case empirically. Guinea pigs, for example, ex-

posed at increasing distances from the end-plate of a shock tube show an in-
crease in the P50 from 37 psi against the end-plate to 57 psi at i ft from the

4
end-plate; e.g., the pressure rises in two rapid steps instead of one. Like-

wise, dogs tolerate without fatality well over 150 psi if the time to Pmax is



30 msec or longer, even though the pulse duration is as long as 5 to 20 sec. 5

involved in the biological interpretation of the hazards of overpres sure is

the duration of a single, "fast"-rising overpressure. Data are at hand which

indicate that, within limits, the duration of such a pulse of overpressure is

significant; e.g., for the dog about 220 psi enduring for 1. 8 msec is fatal,

whereas only 75 psi is fatal when the duration is i1. 8 msec; for smaller ani-

mals, duration is important only for shorter intervals like fractions of a

9
millisecond to 1, 2, -or 3 msec.

Currently, data simply are not at. hand to allow a more definitive and

quantitative interpretation of those characteristics of pulses of overpressure

which define hazard clearly. It remains for future work to systematically

spell out the criticality of rates of pressure rise, overpressure duration, step

loading with two or more shocks in the rising phase of a pulse, and finally the

biological meaning of oscillating overp re ssure s.

Last, there remains the question of extrapolating interspecies blast data

to larger (or smaller) animals. There is little to be said except that one

should approach the extrapolation of data to any given species, including man,

with considerable caution. First, it should be noted that all the animals used

in the work described here were mounted against a reflecting surface and any

extrapolation should keep this fact in mind. Second, the shock overpressures

related or correlated with the interspecies mortality were the reflected shock

pressures and one should not confuse an incident or local static-free field

pressure - corresponding to the incident pressures reported here - with the

reflected shock. Third, exactly what the pressure reflection would be when

an incident wave strikes an animal in the open is not currently clear to the

authors and certainly the data presented do not bear upon this point.

26



Fourth, the extrapolation set forth in Fig. 9 applies strictly to the pulse

form studied and to an overpressure duration of about 400 msec. Fifth, for

these conditions, it is not known whether man is more or less tolerant than

might be implied by the 70 kg point marked in Fig. 9. A few data do exist for
.9 10

the human case which relate 235 psi and 450 psi with human mortality, but

these concern only high explosive-produced overpressures of a few msec dura-

tion and do not apply at all to the longer duration case. It would seem. there-

fore, that the extrapolation indicating that a 400 msec single, sharp-rising

overpressure of 50.5 psi applies to as large an animal as man and might well

be considered a tentative figure subject to all the conditions mentioned above.

In the meantime, one must await the results of further experimental work to

define more definitively man's tolerance to blast.
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